Blurred lines: Autotrophic and heterotrophic food resources and macroinvertebrate communities in headwater streams

> Rebecca A. Eckert and William O. Lamp Dept. of Entomology, University of Maryland

Green <u>or</u> brown...

Secondary Consumer

Primary Consumer

Basal Microbes

Energy Source

...or green <u>and</u> brown?

Algae in heterotrophic streams:

- May influence decomposition (Danger et al. 2013)
- High quality food resource for insects

(Brett & Müller-Navara 1997; Guo et al. 2016)

• Food for grazers (Dobson et al. 1994)

Environmental Conditions Matter for Algae

- Higher nutrients = higher algal biomass (Smith et al. 1999)
- Higher light = higher algal biomass (Hill et al. 2009)

High nutrients

High light, low nutrients

In temperate headwater streams:

- Determine whether algal biomass on leaves changes with light and nutrient conditions
- Determine whether macroinvertebrate communities change with changes in algal biomass on leaves

Methods: Stream Characteristics

Methods: Field experiment

Methods: Lab processing

- Remove, preserve, identify macroinvertebrates
- Use leaf discs to assess algal biomass (chlorophyll-a*)
- Future work includes leaf stoichiometry, chl-a:AFDM to estimate degree of autotrophy to heterotrophy, algal community identification

*Measured extracted chlorophyll-a fluorescence on Turner Designs Trilogy Laboratory Fluorometer using Chlorophyll-a Non-acidification Module

Results: Algal Biomass and Macroinvertebrates

Results: Feeding Guild Abundance

Results: Feeding Guild Biomass

Results: Ephemerellidae

- Significantly correlated to algal biomass (r=0.417, p=0.001, n=60)
- Classified as collectorgatherers
- Often collect algae (diatoms)
- Largely Ephemerella, some Eurylophella and Serratella

Summary

- Algal biomass on leaves
 - Nutrients and light
- Macroinvertebrate abundance on leaves
 - Complex
- Macroinvertebrate biomass on leaves
 - Marginally higher with high nutrients
- Diversity
 - No apparent effect
- Community composition
 - Are specific taxa associated with specific characteristics?
 - Ephemerellidae: correlated to algal biomass
 - *Tipula*: abundance marginally lower in light conditions
 - Is it driven more by stream?
 - Seasonal differences
- Certain macroinvertebrates may be associated with specific conditions, not necessarily following green or brown food web expectations
- Green and brown food webs are not separate but interconnected in temperate headwater streams

University of Maryland: Flagship Fellowship Department of Entomology

Montgomery County Parks Matthew Harper Wendy Hanley Mike Jones

Turner Designs: Student Travel Stipend Award

Becca Wilson, Jessica Grant, Jen Jones, Lauren Leffer, Chloe Garfinkel, Cullen McAskill, Anthony Zhao, Kimmy DeLonge, Keith Price, and the rest of the Lamp Lab

)nest

k vou to