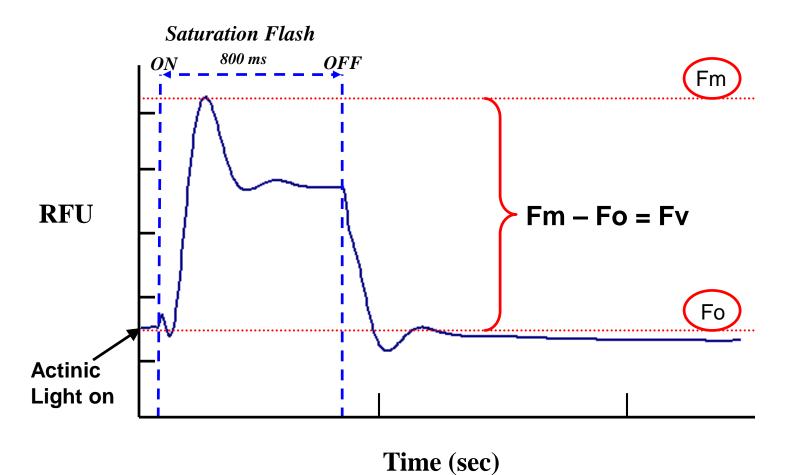
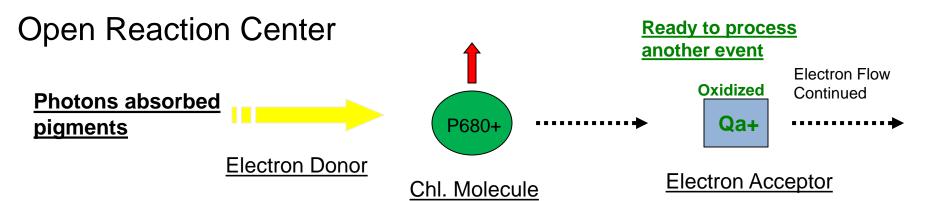

AquaFlash: Handheld Active Fluorometer

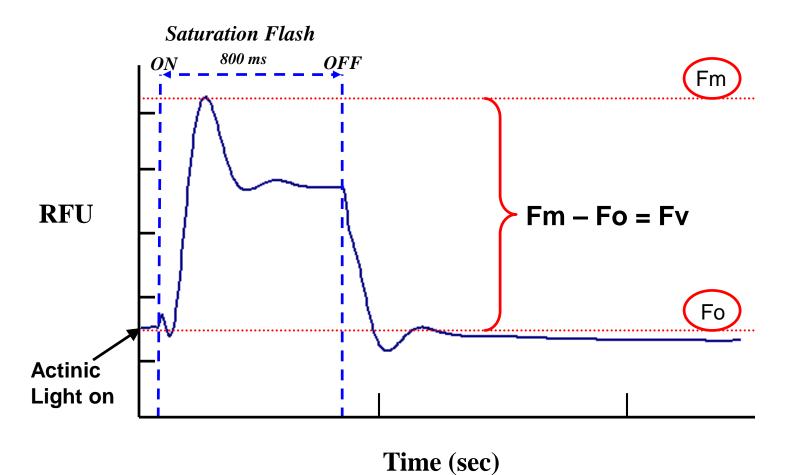
Pam Mayerfeld Vice President, Marketing & Sales April 6, 2017

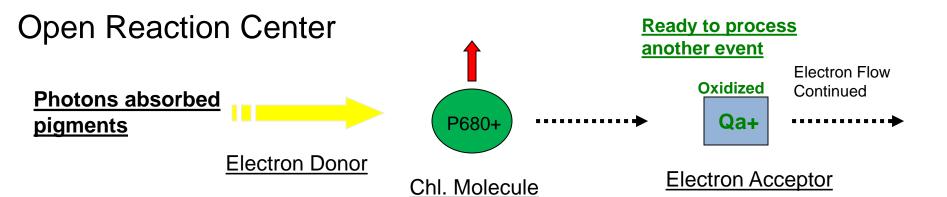


Definition: Fluorescence from a physiologically active cell

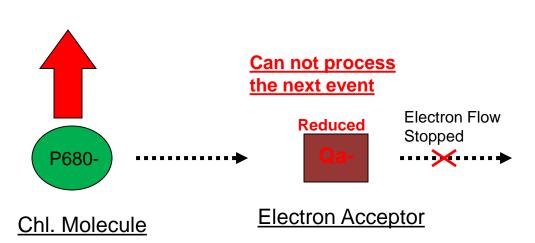


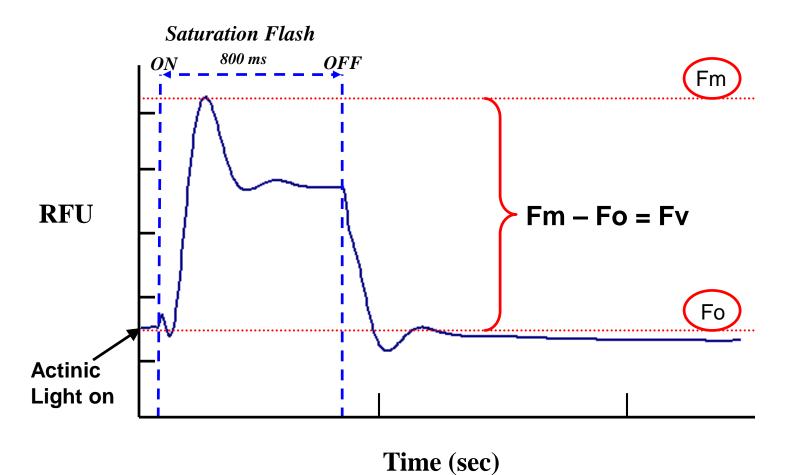
An example of a typical response curve for algae





An example of a typical response curve for algae





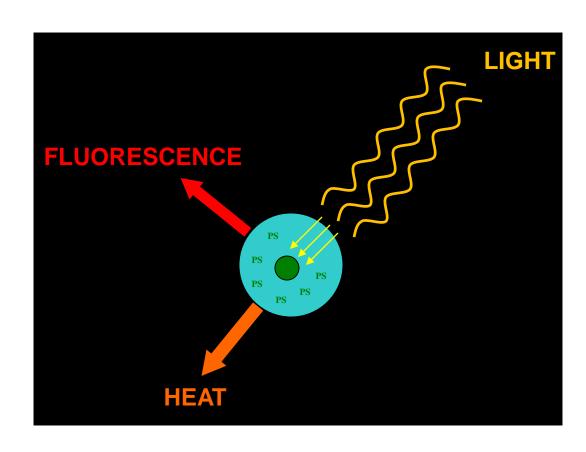
An example of a typical response curve for algae

Healthy Phytoplankton

- Background fluorescence is low because their photosynthetic capabilities aren't hindered
 - Example, 100 RFU for background fluorescence (Fo)
 - (Fm) jumps to 200 RFU after saturation
 - (200 100)/200 = 0.50

Unhealthy Phytoplankton

- Background fluorescence is high because their photosynthetic capabilities are hindered (not enough nutrients or too much light stress)
 - Example, 175 RFU for background fluorescence (Fo)
 - (Fm) jumps to 200 RFU after saturation
 - (200 175)/200 = 0.13

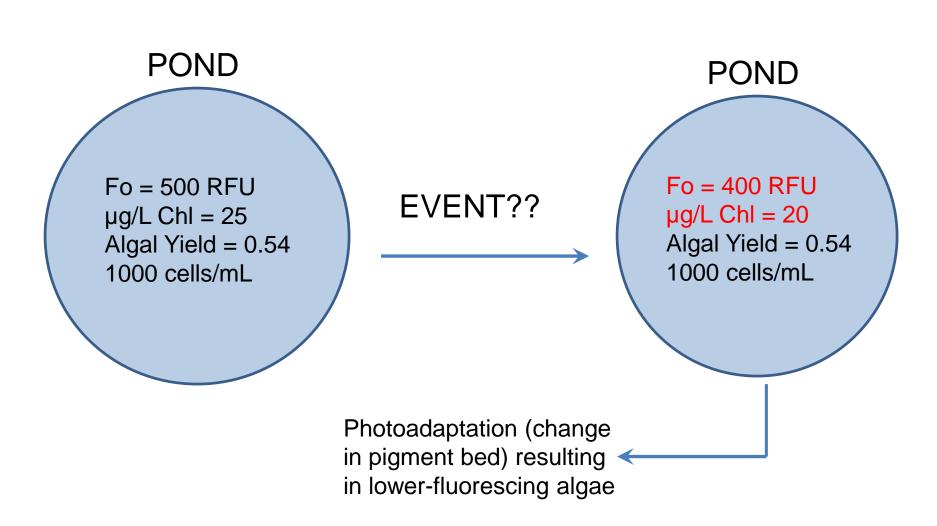


THILLIP

There are 3 major pathway for light to take after being absorbed by the algal cell:

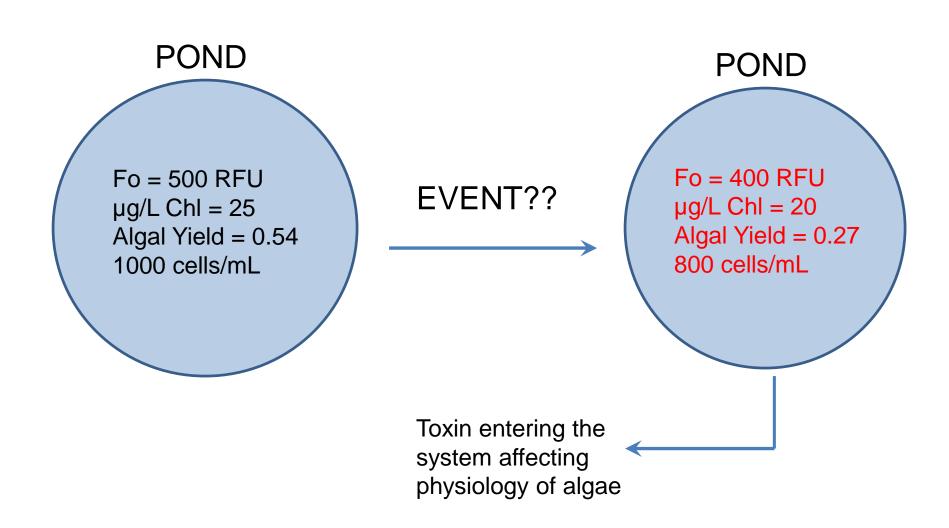
- Photosynthesis (PS)
- Fluorescence
- Heat

Fluorescence Variability


Factors that affect fluorescence response:

- Light history of the cells
- Algal phases
 - Exponential growth
 - Stationary
- Nutrient stress
- Presence of toxins
- Speciation

Fluorescence Variability


Yield is not affected by variability in fluorescence

Fluorescence Variability

Yield is a direct measure of the variability in fluorescence

Applications for Active Fluorescence

- Onset of algal blooms
 - Track changes in Yield
- Tracking of Toxins
 - Algal yields will drop if a toxin in system affects photosynthetic activity
- Nutrient Effects
 - Aquaculture monitoring
 - Eutrophication
- Estimate Algal Abundance
 - Use Fo to monitor or measure changes in algal abundance

Why Develop a Handheld Active Fluorometer?

- Easy to use, rugged
 - No software required
 - No set up or calibration required
- Self contained, quick
 - Use to study remote locations
 - Results in <15 seconds
- Provides multiple parameters enabling dual use
 - Algal monitoring
 - Algal assessment

- Low cost compared to other market instruments
 - Important measurement for an affordable price

AquaFlash Data

- > Chlorophyll μg/L
- > Yield
- > Time
- > Sample Number
- > Fo
- > Fm
- > Blank

AquaFlash Calibration

Why Calibrate

Increases accuracy of chlorophyll estimates for specific environments

How to Calibrate

- Know the concentration of the sample used for the calibration
- Run the calibration procedure
 - This will convert RFU values to µg/L Chlorophyll estimates

When Calibrations Go Bad

- Can I get my factory cal back?
 - AquaFlash Calibration Solution

Calibration Check

The Chk Std button is used to check whether the instrument's calibration has changed

"PASSED" – indicates the instrument's calibration has not changed and validates instrument stability

"FAILED" – indicates something wrong with the instrument such as an electronic, optical, or hardware failure. This would require users to call Turner Designs for support

AquaFlash Specifications

Sensitivity: 0.3 µg/L of Chlorophyll

Linear Range: $0.3 - 100 \mu g/L$

Linearity: 0.99R²

Light Source: LED

Detector: Photodiode

Data Output: ASCII

Data Capacity: 1,000 measurements

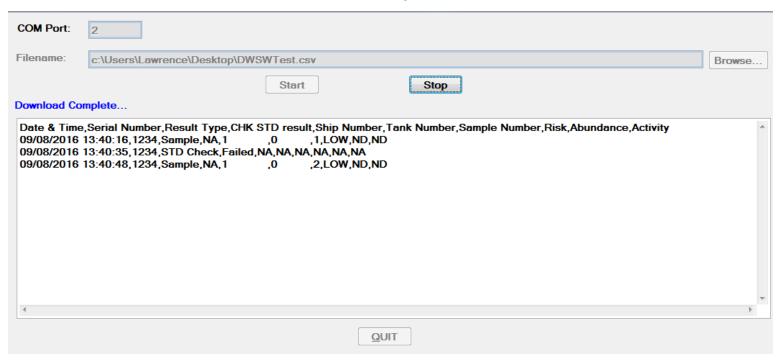
Temperature: 41-104°F; 5-40°C

Weight: 0.87 lbs. (0.4kg)

Size: 1.75" x 3.5" x 7.25" (4.45cm x 8.9cm x 18.4cm

Case: IP 67 standard; dustproof/waterproof

Power: 4 AAA batteries (standard or rechargeable)


AquaFlash limits were determined using Tetraselmis sp.; limits may vary for other algal species

Easy Data Download

- Set COM port
- 2. Click Browse to designate where to save file
- 3. Name file
- 4. Press Start
- 5. Select Data and Send Data from AquaFlash
- 6. When download is complete press Stop
- 7. Data are saved as .txt file; can be opened with Excel

Sample Data Sets

Alga used for these data was an old Rhodomonas salina culture

0 ug/L		
Chl	Yield	
0.23	0.41	
0.13	0.24	
-	-	
0.03	0.85	
0.07	0.63	
-	-	
-	-	
0.08	0.68	
-	ı	
0.11	0.56	
0.08	0.08 0.24	

Average Stdev CV

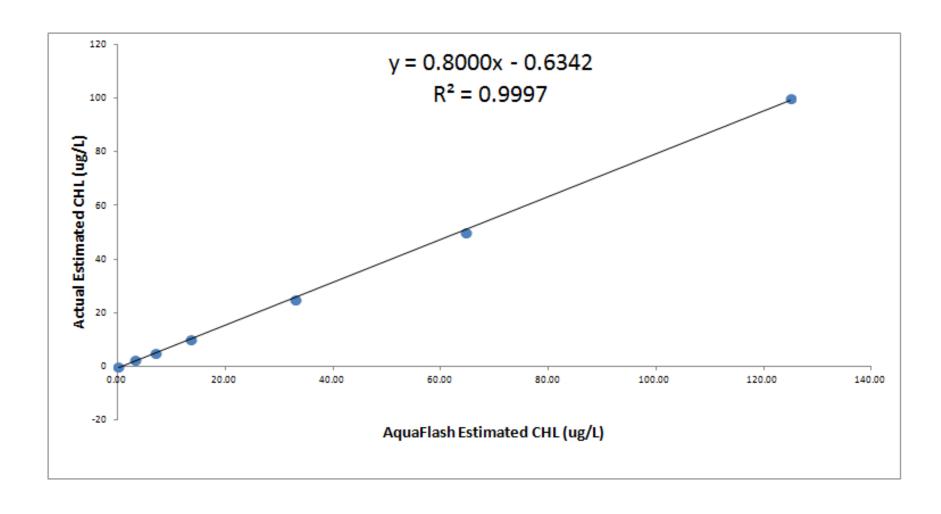
2.5 ug/L		
Chl	Yield	
2.82	0.42	
3.29	0.31	
3.38	0.38	
3.49	0.42	
3.13	0.25	
3.42	0.39	
2.65	0.32	
3.38	0.32	
3.68	0.38	
3.25	0.35	
0.33	0.06	
10% 16%		

5 ug/L		
Chl	Yield	
7.26	0.36	
7.43	0.23	
6.51	0.39	
6.73	0.34	
6.78	0.38	
7.19	0.39	
6.98	0.35	
0.36	0.06	
5%	18%	

10 ug/L		
Chl	Yield	
12.1	0.35	
13.8	0.38	
13.34	0.38	
13.31	0.41	
14.25	0.38	
14.4	0.36	
13.27	0.36	
13.50	0.37	
0.77	0.02	
6%	5%	

25 ug/L		
Chl	Yield	
32.93	0.31	
32.29	0.36	
33.31	0.36	
33.57	0.42	
33.05	0.4	
32.2	0.39	
32.89	0.37	
0.55	0.04	
2%	10%	

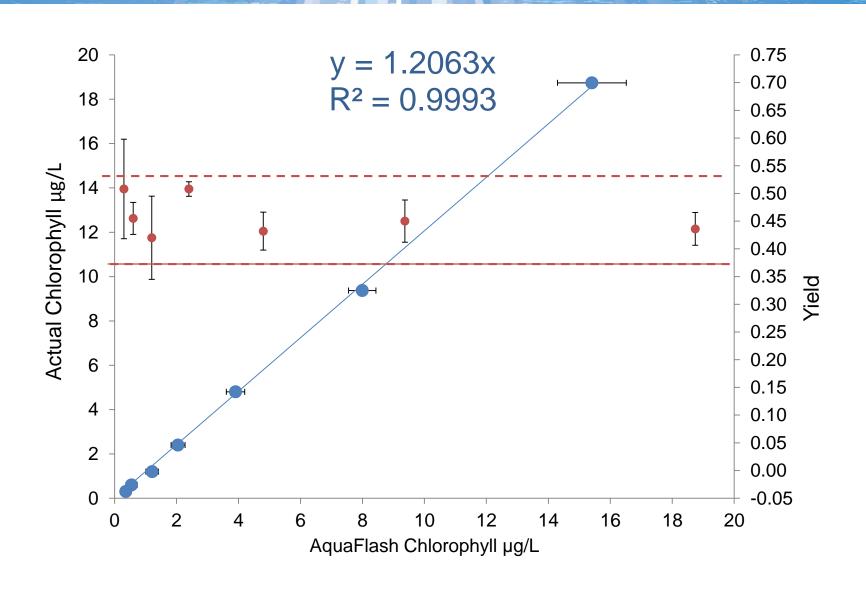
50 ug/L		
Chl	Yield	
64.62	0.38	
63.6	0.41	
68.49	0.31	
61.73	0.33	
64.02	0.38	
64.49	0.36	
2.48	0.04	
4%	11%	


100 ug/L		
Yield		
0.34		
0.39		
0.38		
0.41		
0.34		
0.36		
0.39		
0.38		
0.39		
0.37		
0.38		
0.02		
6%		

Chl (µg/L)	Yield	CV
2.5	0.35	16 %
5	0.35	18 %
10	0.37	5 %
25	0.37	10 %
50	0.36	11 %
100	0.38	6 %

Old Rhodamonas Salina

Calculated MDL: 0.4 µg/L


Sample Data Sets

Dunaliella salina good culture used for testing

Chl (ug/L)	Yield	Stdev	CV
17.5	0.44	0.03	7%
8.8	0.45	0.04	8%
4.4	0.43	0.03	8%
2.2	0.51	0.01	3%
1.1	0.42	0.08	18%
0.6	0.46	0.03	6%
0.3	0.51	0.09	18%

Fresh Dunaliella Salina

Sample Handling for Obtaining Good Data Sets

- Minimum of 3 replicates per sample
 - Don't scan the same sample twice
- Make sure sample is well mixed
 - Settling or separation in sample source
- Keep cuvette clean
 - Wear gloves
 - Fingerprints on glass cuvette can cause variability
 - Excessive use of Kim Wipes
- Cross contamination
 - Minimum of 3 rinses after each sample
 - New pipet tips; don't be sloppy

Sample Considerations for Obtaining Good Sample Sets

- This measurement is qualitative, even if unit is calibrated
- Most of the variability is sample related
 - Could be as much as 30%
 - Actual instrument variability is +/- 2%
- Negligible effect from suspended sediments
 - Blue excitation, red emission
 - If concentration is too high problems with light blocking
- Significant effect from dissolved organics
 - Can be corrected using filtration
 - Simple subtraction

How to use the AquaFlash

Measurement Procedure

- 1. Power on the *Aqua*Flash
- 2. Pour sample water into a clean glass cuvette
- 3. Wipe the sides of the cuvette using Kim Wipes
- 4. Insert cuvette with sample into AquaFlash
- 5. Close the sample compartment's lid
- Press the READ button
- Wait for measurement to end
- 8. Remove cuvette and discard sample

Pam Mayerfeld pam_mayerfeld@turnerdesigns.com 408-212-4048