

Fluorometers: Integration Experiences with Unmanned Vehicles

Pam Mayerfeld VP of Marketing & Sales, Turner Designs September 19, 2017

Fluorometers for Integration

Desirable characteristics of a fluorometer intended for system level integration:

- Low Power
- Small & lightweight
- Configurable (form factor and optics)
- Easy data integration

		Manufacturer	Model	Typical Current Draw		
		Turner Designs	Cyclops Integrator	80 mA (3 sensors)		
		WET Labs	ECO Puck	80 mA (3 sensors)		
		Turner Designs	Cyclops	20 mA		

Apium – Data Diver

- Small prototype swarm vehicle
 29.5" X 2.25"; 3.7lb
- Operates at surface
 - Max dive depth 100m
- Profiling capability enables measurement of water column

Apium - Integrated No Housing Cyclops

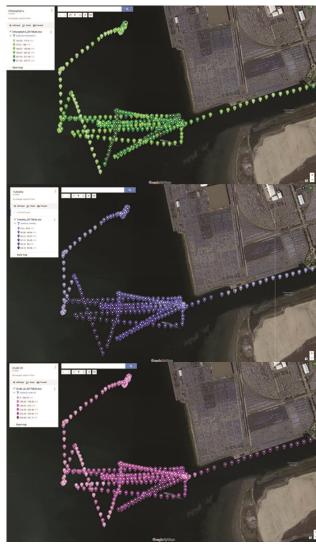
- Key reasons
 - Small size
 - Low cost
 - Multiple sensing options with same form factor
- Targeting diverse markets
 - Physical Oceanography
 - Aquaculture
 - Hydrographic Survey
 - Defense

Drew Heltsley drew@apium.com

Ocean Aero – Submaran[™] S10

- Self-powered, hybrid surface and sub-surface vehicle
 - Wind and solar powered
- Previously integrated ADCPs, CTDs, cameras, multi-beam sonars, acoustic modems, high bandwidth radios, passive acoustic receivers

Ocean Aero - Integrated Cyclops Integrator


- 3 sensors: Chlorophyll, Turbidity, Crude Oil
- Key reasons
 - Dimensions
 - -Weight
 - Power requirements
- Hull fully floodable
 Sealed housing on CI

Ocean Aero data - San Diego Bay

• Targeting Oil & Gas and Environmental Monitoring

Chlorophyll

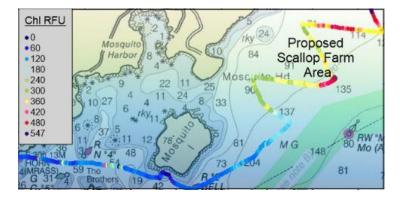
Turbidity

Crude Oil

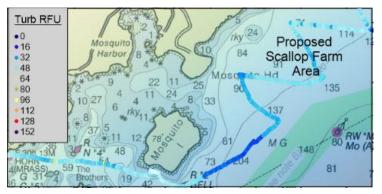
Neil Trenaman ntrenaman@oceanaero.us

Navocean - Nav2 ASV

- Sail and Solar ASV
 - Average speeds of 2+ knots
 - Continuous communications
- Previously integrated CT sensors as well as hydrophone receivers


Navocean - Integrated Cyclops Integrator

- 3 sensors: Chlorophyll, CDOM, Turbidity
- Key reasons
 - -Size
 - Power requirements
- Sealed Hull (unsealed housing on CI)



Navocean - Test run near proposed scallop farms in Maine

Chlorophyll

CDOM

-

Turbidity

biaity

Navocean – Target Markets

- Conducting HAB and Productivity Surveys
 - Fisheries
 - Marine mammal researchers
- Adding Mote Marine Labs OPD (Optical Plankton Discriminator)
 - Map the extent of surface algal blooms and determine the presence or absence of toxic algal species.
- Ultimate goal is to be able to deliver HABs forecast for a region, much like a weather forecast

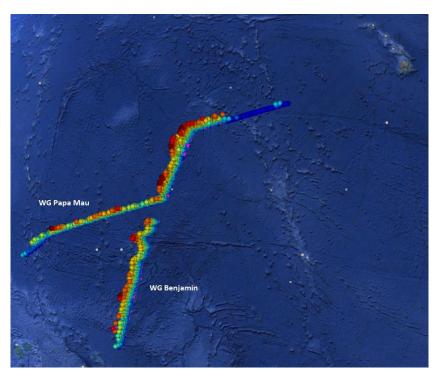
Scott Duncan scott@navocean.com

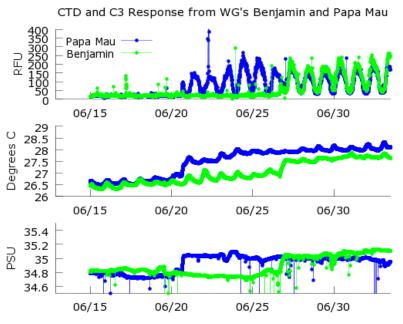
Liquid Robotics - Wave Glider^R

- Wave and solar powered surface vehicle
- Initial integration 2010 Deepwater Horizon Oil Spill
 - C3s on base of the float & on the sub
- Improved design; now integrate over 60 sensors
 - CTDs, CTDOs, Ocean Current Monitors, Acoustic Modems, Hydrophones, Acoustic Monitoring Receivers, Fluorometers
- Target markets
 - Defense
 - Maritime Surveillance
 - Environmental Assessment
 - Oil and Gas

Liquid Robotics - PacX Mission

On November 17th 2011, Liquid Robotics launched 4 Wave Gliders from San Francisco with the goal of being the first to cross the Pacific Ocean




Each vehicle carried identical scientific payloads including a CTD, weather station, wave sensor, and Turner Designs C3 Fluorometer configured with Chlorophyll, Turbidity, and Crude Oil sensors

13 months later the first Wave Glider arrived in Australia and two months later the second arrived!

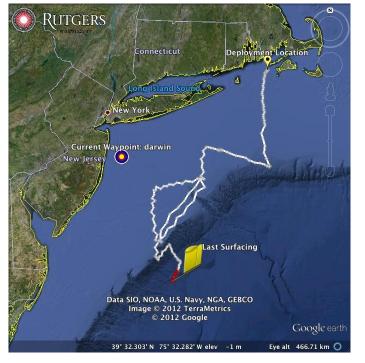
DESIGNS Reliable Instruments for an Unreliable World Reliable Instruments for an Unreliable World

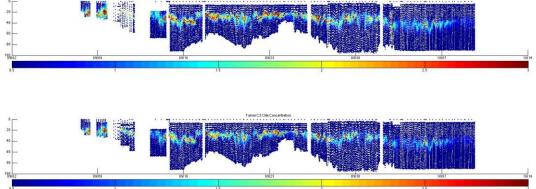
- Collected over 5.5M data from the surface of the ocean in places rarely sampled, if at all!
- Bloom was spotted by 1st Wave Glider & validated 6 days later by 2nd
- Coincidental changes in the physical and biological sensors from the vehicles

LIQUID ROBOTICS A Boeing Company

info@liquid-robotics.com

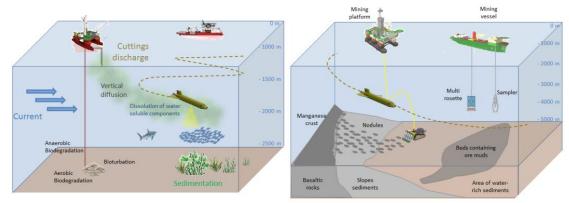
- Buoyancy driven AUV
- Over 40 sensors available for integration into payload bay
 - Integrate ECO Puck & Cyclops Integrator





Teledyne Slocum Glider -Fluorometer Intercomparison

Rutgers I-COOL program and Teledyne Webb Research deployed a Slocum Glider to evaluate the C3 No Housing Fluorometer vs ECO Puck. The deployment lasted 45 days starting September 7th, 2012.



Each instrument had two channels that were directly comparable; Chlorophyll and CDOM. The spatial time series of chlorophyll shows similar response to significant structure in the water column.

- 19 project partners from 9 countries, including 6 European SMEs (*Cyprus Subsea is one*) 4 year project (2015–2019) Coordinated by Laurent Mortier of ARMINES, France
- Development and at-sea qualification of two deep-sea autonomous gliders (to 5000m depth) Multi-mission vehicles providing services for:
- Fundamental research
- Long-term environmental monitoring (Copernicus, MSFD)
- Offshore industry (Oil and Gas, Sea Mining)

This work is carried out in frame of BRIDGES project, which receives funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 635359.

	A pair of deep (2400m) and ultra-deep (5000m) gliders
	Extended payloads targeting several markets
•	 Several Sensors developed under the project Successful sensor demonstrations in June 2017 Developed smart sensor interface for easy integration
	Cyclops-6K are extensively used in most payloads
	 They will be mounted vertically in the payload bay
	Vehicle Demonstrations are due Spring 2019
	Commercial vehicles will be sold by ALSEAMAR, France
	UTRADEEPEXPLORER UXPOOI

For more information on payloads: Dan Hayes hayesdan@cyprus-subsea.com

Payload	Sensors
General Purpose	 CTD O2 CYCLOPS-CRUDE CYCLOPS-REFINED
Water Column Habitats	 CTD O2 Phosphate CYCLOPS-TURB CYCLOPS-CDOM Octopus Camera Water Sampler
Hydrographics	 CTD O2 Sub Bottom Profiler CYCLOPS-TURB Octopus Camera
Oil & Gas	 CTD O2 CYCLOPS-CDOM CYCLOPS-CRUDE CYCLOPS-REFINED Octopus Camera
Climate Change	CTDO2Octopus Camera

Pam_Mayerfeld@TurnerDesigns.com